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Abstract

This paper proposes a hybrid method for the prediction of vibrational and acoustic responses of low-damping system in

the medium-to-high frequency ranges by using the power flow analysis (PFA) algorithm and statistical energy analysis

(SEA) coupling concepts. The main part of this method is the application of the coupling loss factor (CLF) of SEA to the

boundary condition of PFA in reverberant system. First, for hybrid PFA, the hybrid boundary conditions on 1-D and 2-D

cases were derived in the general form. To verify the derived boundary conditions, numerical analyses for each case were

performed. The hybrid PFA solutions using derived boundary conditions were compared with the classical PFA solutions

with various reverberance factors including the effects of the characteristic length, excitation frequency and group velocity

besides damping loss factor of the subsystem. Additionally, the hybrid PFA on 3-D case and the hybrid power flow finite

element method (PFFEM) for hybrid PFA of built-up structures are described in the other companion paper.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Much of the current vibration analyses of structure-borne noise have been done by using the traditional
finite element method (FEM). However, as the excitation frequency increases, the vibrational wavelength in a
structure decreases. To properly model high-frequency vibrations, either the order of shape functions in FEM
must be increased or the size of mesh decreased. Therefore, finite element models are disadvantageous for
performing accurate high-frequency analysis because they become too large for efficient application [1,2]. In
addition, the traditional finite element method is essentially a deterministic analysis technique. The method
requires all the data for a problem to be known exactly. At low frequencies, data such as material properties
and joint behavior are reasonably well known and the solution is not highly sensitive to their typical
variations. However, at high frequencies, the required data for structural dynamic problems is uncertain, and
thus, the solution is highly sensitive to data variations. Therefore, at high frequencies, the statistical approach
for analyzing structural and acoustic responses is more appropriate than the deterministic one.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Statistical energy analysis (SEA) has become a widely accepted technique for modeling high-frequency,
dynamic responses of vibro-acoustic systems of high modal density. In SEA, each component of a built-up
system is treated as a statistical population of mode groups and the average dynamic response of component
parts calculated [3]. Therefore, the analytic model for SEA is very simple compared with that for common
FEA. However, because assumptions in the development of SEA are simplified, the analytic results are not
sufficiently reliable in the low-to-medium frequency ranges. Additionally, SEA gives no information about the
spatial distribution of dynamic responses such as energy, acceleration, etc. within a given subsystem.

General energy analysis (GEA) formulates the vibrational problem of structures in a purely energetic form
without approximation [4]. Therefore, the results obtained by GEA are exact when compared to those
obtained using the displacement solution to the vibrational wave equation. However, GEA is more
computationally intensive than the classical exact solutions in 1-D vibrational problems and the development
of general energy formulation and coupling relationship for higher-order structures such as plates has not been
achieved yet.

Power flow analysis (PFA) is understood to be one of reliable methods, and has remarkable advantages
compared to other analytic tools for the prediction of vibrational and acoustic responses in the medium-to-
high frequency ranges. PFA models the flow of mechanical energy in a manner analogous to the flow of
thermal energy in heat conduction. Because the governing equation for energy distribution in steady state
condition is spatial differential equation, PFA gives information about the spatial variation of intensity as well
as energy density. Additionally, power flow finite element method (PFFEM) that applies PFA to the finite
element technique can present the consistent analytic result regardless of modelers.

Many researchers have developed SEA since 1959. SEA has much information, especially about the
coupling data, which are important in the vibro-acoustic analysis of built-up structures and has some
commercialized softwares/hardwares calculating SEA parameters such as coupling loss factor (CLF), modal
density, damping loss factor, etc. This coupling information can be used efficiently in an alternative method
based on energy. In particular, the commercialized NVH software based on energy must support the functions
that simulate with the use of experimental parameters to increase the accuracy of analytic results. In this case,
the coupling loss factor of SEA, which is easier to be obtained, can be used as very efficient information. In
relation to these, Langley has shown a simple methodology which uses CLF in the boundary condition of PFA
about one kind of motion in a 2-D structure for the different object [5].

In this paper, the general algorithm for the use of CLF in PFA boundary condition was presented.
Formulation using CLF in PFA boundary condition was developed to cover the all kinds of propagating
waves of one- and 2-D cases, and was proven to be valid through numerical analyses of each dimensional case.
Additionally, the hybrid PFA for the 3-D case and the hybrid PFFEM to extend the application area of the
developed hybrid method to built-up structures will be described in the other companion paper [6].
2. Formulation of hybrid boundary condition in power flow analysis

2.1. 1-D case

The equation of motion for the uniform Bernoulli–Euler beam excited by a transverse harmonic point force
is

EcI
q4w
qx4
þ rS

q2w

qt2
¼ Fd x� x0ð Þ ejot. (2.1)

Here Ec ¼ E 1þ jZð Þ is the complex modulus of elasticity, E is the Young’s modulus, Z is the hysteretic
damping loss factor, I is the moment of inertia, r is the density, S is the sectional area, o is the excitation
frequency, w is the transverse displacement, and Fd x� x0ð Þ ejot is the harmonic point force applied at point x0.

The general solution of Eq. (2.1) is

wðx; tÞ ¼ A1 e
�jkcx þ A2 e

jkcx þ A3 e
�kcx þ A4 e

kcx
� �

ejot, (2.2)
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where Ai is the complex coefficient and kc is a complex wavenumber defined by the expression:

kc ¼
o
cp

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jZð Þ

1þ Z2ð Þ

4

s
, (2.3)

where cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2EI=rS4

p
is the phase velocity of the flexural wave in beam.

In lightly damped structures, that is, Z51, the real and imaginary components of the complex wavenumber
kc, k1 and k2 are well approximated as, respectively [1]

k1 ¼ o=cp; k2 ¼ � Z=4
� �

k1. (2.4)

Total power in the transversely vibrating beam may be separated into one that is associated with the shear
force and the other with the bending moment. The time-averaged total flexural power can be represented as

q
� �

f
¼

1

2
Re �V

qw�

qt

� 	
þ

1

2
Re �M

q2w�

qxqt

� 	
, (2.5)

where V ¼ �EcI q3w


qx3

� �
is shear force, M ¼ EcI q2w



qx2

� �
is bending moment and the sign of asterisk

means the complex conjugate.
The time-averaged total flexural energy density by transverse displacement (Eq. (2.2)) is the sum of its

potential energy density and the kinetic energy density:

eh if ¼ eh ipotential þ eh ikinetic ¼
1

4
EI

q2w
qx2

q2w�

qx2

� 	
þ

1

4
rS

qw

qt

qw�

qt

� 	
. (2.6)

Goyder et al. [7] and Wohlever [8] have shown that the far-field component of energy and power is dominant
at high frequencies. Therefore, the time-averaged far-field total flexural power in which near-field terms are
neglected is represented as

q
� �

f
¼ EIok3

1 A1j j
2 e2k2x � A2j j

2 e�2k2x
� �

¼ q
� �þ

f
� q
� ��

f
, (2.7)

where q
� �þ

f
and q

� ��
f
mean the positive- and negative-directional flexural powers, respectively.

The time- and locally space-averaged far-field total flexural energy density in which spatially harmonic
terms are eliminated is represented as

eh if ¼
1

2
rSo2 A1j j

2 e2k2x þ A2j j
2 e�2k2x

� �
¼ eh iþf þ eh i�f , (2.8)

where eh iþf and eh i�f mean the positive- and negative-directional flexural energy densities, respectively.
Using Eqs. (2.7) and (2.8), the relationship between the time- and locally space-averaged flexural energy

density and power can be represented as

q
� �

f
¼ �

c2gf

Zo
d eh if

dx
¼ q
� �þ

f
� q
� ��

f
¼ cgf eh iþf � cgf eh i�f , (2.9)

where cgf ¼ 2 o2EI


rS

� �1=4
is the group velocity of flexural wave in the Bernoulli–Euler beam.

Using Eq. (2.9) and the energy balance equation in a steady state, the energy governing equation for flexural
wave in the Bernoulli–Euler beam can be represented as

�
c2gf

Zo
d2 eh if

dx2
þ Zo eh if ¼ Pin;f . (2.10)

In case of longitudinal vibration in a beam, the relationship between time-averaged energy density and power
like flexural vibration can be represented as [1]

q
� �

l
¼ �

c2gl

Zo
d eh il
dx
¼ q
� �þ

l
� q
� ��

l
¼ cgl eh iþl � cgl eh i�l , (2.11)



ARTICLE IN PRESS
Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 299 (2007) 484–503 487
where cgl ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
is the group velocity for longitudinal wave in a beam. Using Eq. (2.11), the energy

governing equation for longitudinal wave in a beam like that of flexural wave can be represented as

�
c2gl

Zo
d2 eh il
dx2
þ Zo eh il ¼ Pin;l . (2.12)

The general solution of Eqs. (2.10) and (2.12) can be expressed as the following form:

eh im ¼ B1 � exp �cmx
� �

þ B2 � exp cmx
� �

; m ¼ f ; lð Þ, (2.13)

where Bi is the constant coefficient and cm ¼ Zo



cgm.
The time- and locally space-averaged energy density solution of m-type wave in Eq. (2.13) is composed of

not propagating wave components but exponentially decaying wave components. Additionally, the value of
cm in Eq. (2.13) means the decay rate of m-type energy density per unit length. Therefore, the reverberance
factor ð<m ¼ cmLcÞ which represents how reverberant the wave-field (subsystem) is, can be defined by
multiplying cm by the characteristic length (Lc) of the subsystem and is related to the excitation frequency,
group velocity and characteristic length besides damping loss factor of the subsystem. If the reverberance
factor Rm of m-type wave-field in a subsystem is zero, the wave-field is completely reverberant
( eh im ¼ constant). Generally, if the hysteretic damping of a structural subsystem is very small like common
metal, the size of a subsystem is not very large, and the exciting frequency is not very high, energy density will
vary little within the subsystem except for loaded subsystem. In this case, the assumption that the energy
density in a subsystem is constant, that is, the wave-field is reverberant, will not be unreasonable.

If the energy density field of each beam in a coupled beam structure shown in Fig. 1 is assumed to be
reverberant and the system contains a modal overlap, the power which is transferred from m-type waves in
beam 1 to n-type waves in beam 2 can be expressed as

P1m!2n ¼ oZ12mnE1m ¼ oZ12mnL1 eh i1m, (2.14)

where E1m is the total energy, eh i1m is the energy density per unit length of an m-type wave, L1 is the length of
beam 1, and Z12mn is the coupling loss factor from m-type waves in beam 1 to n-type waves in beam 2. The
coupling loss factor for point junction among beams in Eq. (2.14) is known as

Z12mn ¼
cg1m hti12mn

2oL1
, (2.15)

where th i12mn is the power transmission coefficient of n-type wave in beam 2 due to m-type wave in beam 1.
Using Eqs. (2.9) and (2.14), the net power of a flexural wave from beam 1 to beam 2 can be represented as

P1f 2m ¼ �
c2g1f

Z1o
d e1h if

dx1
¼
X

m¼f ;l

P1f!2m �P2m!1f

� �
¼
X

m¼f ;l

o L1Z12fm e1h if � L2Z21mf e2h im

� �n o
, (2.16)

and

P1m2f ¼ �
c2g2f

Z2o
d e2h if

dx2
¼
X

m¼f ;l

P1m!2f �P2f!1m

� �
¼
X

m¼f ;l

o L1Z12mf e1h im � L2Z21fm e2h if

� �n o
: (2.17)
Fig. 1. Power flow model of two semi-infinite beams joined at an arbitrary angle.



ARTICLE IN PRESS
Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 299 (2007) 484–503488
For a longitudinal wave, the net power from beam 1 to beam 2 using Eqs. (2.11) and (2.14) can be represented
as

P1l2m ¼ �
c2g1l

Z1o
d e1h il
dx1

¼
X

m¼f ;l

P1l!2m �P2m!1lð Þ ¼
X

m¼f ;l

o L1Z12lm e1h il � L2Z21ml e2h im
� �
 �

, (2.18)

and

P1m2l ¼ �
c2g2l

Z2o
d e2h il
dx2

¼
X

m¼f ;l

P1m!2l �P2l!1mð Þ ¼
X

m¼f ;l

o L1Z12ml e1h im � L2Z21lm e2h il
� �
 �

. (2.19)

The upper equations (2.16)–(2.19) represent the hybrid boundary condition in local coordinate mixing the
concepts of PFA and SEA, using the power transfer relation in reverberant field. That is, using the advantages
of each method, the power flow solution such as Eq. (2.13) is used within the domain and the coupling
relationship of SEA such as Eq. (2.14) is used in the boundary. If N beams are joined at arbitrary angles as
shown in Fig. 2, 2N boundary conditions at the point junction are required for power flow analysis and can be
represented as

�
c2gif

Zio
d eih if

dxi

¼
XN

j¼1;jai

X
m¼f ;l

o LiZijfm eih if � LjZjimf ej

� �
m

� �n o" #
i ¼ 1; . . . ;Nð Þ, (2.20)

and

�
c2gil

Zio
d eih il

dxi

¼
XN

j¼1;jai

X
m¼f ;l

o LiZijlm eih il � LjZjiml ej

� �
m

� �n o" #
i ¼ 1; . . . ;Nð Þ, (2.21)

where �ðc2gif =ZioÞðd eih if =dxiÞ and �ðc
2
gil=ZioÞðd eih il=dxiÞ are net flexural and longitudinal powers in beam i,

respectively, eih im is m-type energy density of beam i, and Zijmn is coupling loss factor form m-type waves in
beam i to n-type waves in beam j. If the beam structure is not composed of co-planer beams, the terms of
torsional energy density and power have to be added in Eqs. (2.20) and (2.21) for hybrid power flow analysis.

However, if the hysteretic damping of a structural subsystem is not small, the size of a subsystem is very
large, or the exciting frequency is very high, the energy density in its subsystem will vary greatly and its field
Beam 1

Beam i

Beam N

xi

xN

x11m
q

1m
q

+

Nm
q

+

−

−

Nm
q

im
q

+

im
q

Fig. 2. General hybrid power flow model of N beams joined at arbitrary angles.
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will be not reverberant any more due to large reverberance factor. In this case, the values of energy density and
power in the boundary cannot represent those spatially averaged in the subsystem. Therefore, the hybrid
boundary condition at the joint of highly damped structures may generate more error than the classical
boundary condition. In case of two coupled co-planer beams, the classical boundary condition in PFA using
the power transmission and reflection coefficients derived by wave transmission approach is expressed as

q
� �þ

2f
¼ t12ff

� �
q
� �þ

1f
þ g22ff

� �
q
� ��

2f
þ t12lf

� �
q
� �þ

1l
þ g22lf

� �
q
� ��

2l
, (2.22a)

q
� ��

1f
¼ g11ff

� �
q
� �þ

1f
þ t21ff

� �
q
� ��

2f
þ g11lf

� �
q
� �þ

1l
þ t21lf

� �
q
� ��

2l
, (2.22b)

q
� �þ

2l
¼ t12fl

� �
q
� �þ

1f
þ g22fl

� �
q
� ��

2f
þ t12llh i q

� �þ
1l
þ g22ll

� �
q
� ��

2l
, (2.22c)

and

q
� ��

1l
¼ g11fl

� �
q
� �þ

1f
þ t21fl

� �
q
� ��

2f
þ g11ll

� �
q
� �þ

1l
þ t21llh i q

� ��
2l
, (2.22d)

where q
� �þ

f
and q

� �þ
l

are the flexural and longitudinal components of power in the positive direction,

respectively, giimn

� �
is the power reflection coefficient of n-type wave in beam i due to m-type wave in beam i,

and all the powers are the values in the boundary.
Since the sum of the power transmission and reflection coefficients is one, the sum of Eqs. (2.22a)–(2.22d)

q
� �þ

1f
� q
� ��

1f
þ q
� �þ

1l
� q
� ��

1l
¼ q
� �þ

2f
� q
� ��

2f
þ q
� �þ

2l
� q
� ��

2l
. (2.23)

Based on the relation of energy density and power, Eq. (2.23) can be expressed as

�
c2g1f

Z1o
d e1h if

dx1
�

c2g1l

Z1o
d e1h il
dx1

¼ �
c2g2f

Z2o
d e2h if

dx2
�

c2g2l

Z2o
d e2h il
dx2

. (2.24)

Eq. (2.24) can be also obtained summing Eqs. (2.16)–(2.19) that are hybrid boundary conditions.
2.1.1. Numerical examples

To verify the usefulness of the new hybrid boundary condition on 1-D case, this condition was numerically
applied to three finite beams joined at arbitrary angles as shown in Fig. 3. To consider an arbitrary case,
the dimensions (L�B�H) of beams were assumed to be 2m� 0:01m� 0:01m, 2m� 0:03m� 0:03m
and 2m� 0:03m� 0:03m, respectively. Beams 1 and 2 were made of steel (E1;2 ¼ 19:5� 1010 Pa;
r1;2 ¼ 7800 kg=m3) and beam 3 of aluminum (E3 ¼ 7:1� 1010 Pa; r3 ¼ 2700 kg=m3). The angle y1, between
beams 1 and 2 was assumed to be 451 and y2 between beams 2 and 3 to be �451. The magnitude of the flexural
point force applied in the center of incident beam is 100N. The time-averaged input power can be
F exp (j�t) 
Ec3 I3

L4

Ec2 I2

Ec1 I1

 L2

 L3

 L1
 x1

 x3
 x2

x4

 

�1

�2

Fig. 3. Three finite beams jointed at arbitrary angles.
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calculated as follows:

Pin ¼
1

2
Re Fejot

� �
�

qw x0ð Þ

qt

� �n� 	
, (2.25)

where w(x0) is the transverse displacement at the loading point. For the first model, the structural damping
values of all beams were assumed to be Z ¼ 0.1. For the second model, to consider the effect of reverberance
factor, the structural damping values of all beams were changed into Z ¼ 0.01 corresponding to the value of
common metals. The detailed procedure of numerical analysis for 1-D case is discussed in Appendix A.1.

Figs. 4–7 show the numerical results obtained using each boundary condition in all joints of the first model
for 1/3 octave band with f c ¼ 5 kHz and Z ¼ 0.1. In this model, the reverberance factors of flexural and
longitudinal wave-fields in each beam are <f 1 ¼ 4:67, <f 2 ¼ 2:69, <f 3 ¼ 2:67, <l1 ¼ 1:26, <l2 ¼ 1:26 and
<l3 ¼ 1:23, respectively. As expected, the flexural energy density of classical exact solution decreases
universally with increasing distance from the excitation location and fluctuates locally in space, especially near
the ends of beams and the junction in Fig. 4. The flexural energy density of power flow solutions, which is
obtained using the hybrid and classical boundary conditions at the joints, varies smoothly in space without
any fluctuation and has a discontinuity line at the junction. The classical exact solutions fluctuate in the
vicinity of smoothed results of the power flow solutions obtained using hybrid and classical boundary
conditions. The results of power flow solutions, which are obtained using hybrid and classical boundary
conditions, generally agree with those of the classical exact solutions. However, because of large reverberance
factors (<f b0), the flexural wave-field is not reverberant any more, and the values of energy density and
power in the boundary are not equivalent to those of space-averaged energy density and power. Therefore, the
difference between results obtained using hybrid and classical boundary conditions widens as the distance
from excitation position increases. This phenomenon also appears in the results of longitudinal energy (Fig. 5),
flexural power (Fig. 6) and longitudinal power (Fig. 7) besides the flexural energy (Fig. 4). In addition, because
the reverberance factors of flexural wave-field are more than twice as large as those of longitudinal wave-field,
the spatial variation of quantities of flexural wave-field in the subsystem is wider than that of quantities of
longitudinal wave-field.
Fig. 4. Flexural energy density distribution of first model in f ¼ 5 kHz and Z ¼ 0.1 (<f 1 ¼ 4:67; <f 2 ¼ 2:69; <f 3 ¼ 2:67). ——, hybrid

PFA solution; - � - � -, classical PFA solution; ??, exact solution.
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Fig. 5. Longitudinal energy density distribution of first model in f ¼ 5 kHz and Z ¼ 0.1 (<l1 ¼ 1:26; <l2 ¼ 1:26; <l3 ¼ 1:23). ——, hybrid

PFA solution; - � - � -, classical PFA solution; ??, exact solution.

Fig. 6. Flexural power distribution of first model in f ¼ 5 kHz and Z ¼ 0.1 (<f 1 ¼ 4:67; <f 2 ¼ 2:69; <f 3 ¼ 2:67). ——, hybrid PFA

solution; - � - � -, classical PFA solution; ??, exact solution.

Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 299 (2007) 484–503 491
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Fig. 7. Longitudinal power distribution of first model in f ¼ 5 kHz and Z ¼ 0.1 (<l1 ¼ 1:26; <l2 ¼ 1:26; <l3 ¼ 1:23). ——, hybrid PFA

solution; - � - � -, classical PFA solution; ??, exact solution.

Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 299 (2007) 484–503492
Figs. 8 and 9 show the numerical results of classical power flow solutions, hybrid power flow solutions, and
SEA solutions, which were obtained using each boundary condition in all joints for 1/3 octave band with
f c ¼ 5 kHz and Z ¼ 0.001 The reverberance factors of each wave-field in the second model are one hundred
times as small as those in the first model. Because the hybrid boundary condition is equivalent to the classical
boundary condition when Z ¼ 0 (R ¼ 0), the power flow solutions obtained using the hybrid boundary
condition become equal to those obtained using the classical boundary condition, as the damping loss factor
decreases. Therefore, Figs. 8 and 9 show that the results obtained using two boundary conditions agree well
due to small reverberance factors. For the in-depth verification of hybrid boundary condition, Figs. 10 and 11
show the effect of reverberance factor in energy densities obtained using each boundary condition about
flexural and longitudinal waves, respectively. In Figs. 10 and 11, the power flow solutions obtained using
hybrid boundary condition were compared with those obtained using classical boundary condition at
all joints. The relative difference in results shown in Figs. 10 and 11 is the value of the difference between
space-averaged energy densities obtained using hybrid boundary condition and classical boundary con-
dition, divided by the space-averaged energy density using classical boundary condition
( E3;classic � E3;hybrid

�� ��= E3;classic

�� ��) in beam 3. As expected, the relative differences of flexural and longitudinal
energy densities obtained using two boundary conditions approach zero as the reverberance factor of each
beam decreases. Therefore, if the reverberance factor of wave-field in the beam is small, the power flow
analysis using hybrid boundary condition will be effective.

2.2. 2-D case

The hybrid power flow analysis for 2-D case will be considered by expanding the algorithm in 1-D case. As
an example of 2-D case, the energy governing equations of flexural, longitudinal, and shear waves in a
homogeneous thin plate are represented as, respectively, [2,9]

�
c2gm

Zo
r2 eh im þ Zo eh im ¼ Pin;m m ¼ f ; l; sð Þ, (2.26)
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Fig. 9. Longitudinal energy density distribution of first model in f ¼ 5 kHz and Z ¼ 0.001 (<l1 ¼ 0:0126; <l2 ¼ 0:0126; <l3 ¼ 0:0123).
——, hybrid PFA solution; - � - � -, classical PFA solution; - - - - , classical SEA solution.

Fig. 8. Flexural energy density distribution of first model in f ¼ 5 kHz and Z ¼ 0.001 (<f 1 ¼ 0:0467; <f 2 ¼ 0:0269; <f 3 ¼ 0:0267).
——, hybrid PFA solution; - � - � -, classical PFA solution; - - - - , classical SEA solution.

Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 299 (2007) 484–503 493
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Fig. 10. Relative difference Ec � Eh

�� ��
 Ec

�� ��� �
of space-averaged flexural energy density by two methods in beam 3 as the reverberance

factor variations of beam 1 and beam 3 in f ¼ 5 kHz. ——, <f 1 ¼ 4:67� 10�9; , <f 1 ¼ 4:67� 10�8; , <f 1 ¼ 4:67� 10�7;

, <f 1 ¼ 4:67� 10�6; , <f 1 ¼ 4:67� 10�5; , <f 1 ¼ 4:67� 10�4; , <f 1 ¼ 4:67� 10�3; , <f 1 ¼ 4:67� 10�2;

, <f 1 ¼ 4:67� 10�1; , <f 1 ¼ 4:67.

Fig. 11. Relative difference Ec � Eh

�� ��
 Ec

�� ��� �
of space-averaged longitudinal energy density by two methods in beam 3 as the

reverberance factor variations of beams 1 and 3 in f ¼ 5 kHz. ——, <l1 ¼ 1:26� 10�9; , <l1 ¼ 1:26� 10�8; ,

<l1 ¼ 1:26� 10�7; , <l1 ¼ 1:26� 10�6; , <l1 ¼ 1:26� 10�5; , <l1 ¼ 1:26� 10�4; , <l1 ¼ 1:26� 10�3; ,

<l1 ¼ 1:26� 10�2; , <l1 ¼ 1:26� 10�1; , <l1 ¼ 1:26.
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where cgm is the group velocity of m-type wave and eh im are the time- and locally space-averaged far-field
m-type energy densities, Pin;m is the input power of m-type wave component in a thin plate, and r2 means
Laplace operator.

For each wave in the plate, the relationship of the time- and locally space-averaged far-field energy density
and intensity can be represented as [2,9]

~q
� �

m
¼ �

c2gm

Zo
q
qx
~i þ

q
qy
~j

� �
eh im, (2.27)

where ~q
� �

m
is the time- and locally space-averaged far-field intensity of m-type wave.

Like the 1-D case, the reverberance factor Rm of m-type wave-field in a plate can be defined by

<m ¼ cmLc, (2.28)

where Lc is the characteristic length of plate subsystem and cm ¼ Zo



cgm. If the reverberance factor of a wave-
field in a subsystem is very small, the energy density field in the subsystem will be almost reverberant. In this
case, because field values in the boundary can represent space-averaged field values of one subsystem, the
hybrid boundary condition for plate structures can be derived. In the reverberant field, the power per unit
length of line junction, which is transferred from m-type energy field in plate 1 to n-type energy field in plate 2,
can be expressed by Eq. (2.29), using the coupling loss factor of SEA,

P1m!2n ¼
oZ12mnE1;m

L
¼

oZ12mnS1 e1h im
L

, (2.29)

where E1,m is the total energy of m-type wave in plate 1, S1 is the area of plate 1, Z12mn is the coupling loss
factor from m-type wave in plate 1 to n-type wave in plate 2, L is the length of the line junction, and e1h im is the
energy density of the m-type wave in plate 1. In Eq. (2.29), the coupling loss factor for line junction among
plates is known as

Z12mn ¼
cg1m � L � th i12mn

opS1
, (2.30)

where cg1m is the group velocity of m-type wave in plate 1.
Using Eqs. (2.27) and (2.29), the net power of flexural wave from plates 1 to 2 is represented as

P1f 2m ¼ �
c2g1f

Z1o
r e1h if �~n ¼

X
m¼f ;l;s

P1f!2m �P2m!1f

� �
¼
X

m¼f ;l;s

o
L

S1Z12fm e1h if � S2Z21mf e2h im

� �n o
, (2.31)

and

P1m2f ¼ �
c2g2f

Z2o
r e2h if �~n ¼

X
m¼f ;l;s

P1m!2f �P2f!1m

� �
¼
X

m¼f ;l;s

o
L

S1Z12mf e1h im � S2Z21fm e2h if

� �n o
, (2.32)

where ~n is the normal vector shown in Fig. 12.
For a longitudinal wave, the net power from plates 1 to 2 can be represented as

P1l2m ¼ �
c2g1l

Z1o
r e1h il �~n ¼

X
m¼f ;l;s

P1l!2m �P2m!1lð Þ ¼
X

m¼f ;l;s

o
L

S1Z12lm e1h il � S2Z21ml e2h im
� �n o

, (2.33)

and

P1m2l ¼ �
c2g2l

Z2o
r e2h il �~n ¼

X
m¼f ;l;s

P1m!2l �P2l!1mð Þ ¼
X

m¼f ;l;s

o
L

S1Z12ml e1h im � S2Z21lm e2h il
� �n o

. (2.34)

For a shear wave, the net power from plates 1 to 2 can be also represented as

P1s2m ¼ �
c2g1s

Z1o
r e1h is �~n ¼

X
m¼f ;l;s

P1s!2m �P2m!1sð Þ ¼
X

m¼f ;l;s

o
L

S1Z12sm e1h is � S2Z21ms e2h im
� �n o

, (2.35)
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and

P1m2s ¼ �
c2g2s

Z2o
r e2h is �~n ¼

X
m¼f ;l;s

P1m!2s �P2s!1mð Þ ¼
X

m¼f ;l;s

o
L

S1Z12ms e1h im � S2Z21sm e2h is
� �n o

. (2.36)

The upper equations (2.31)–(2.36) represent the hybrid boundary condition of 2-D case in local coordinate
mixing the concepts of PFA and SEA. To extend this boundary condition to the general form in 2-D case, if N

plates are joined at arbitrary angles as shown in Fig. 13, 3N boundary conditions at the line junction are
required for power flow analysis and can be derived as

�
c2gif

Zio
r eih if �~ni ¼

XN

j¼1;jai

X
m¼f ;l;s

o
L

SiZijfm eih if � SjZjimf ej

� �
m

� �n o" #
i ¼ 1; . . . ;Nð Þ, (2.37)

�
c2gil

Zio
r eih il �~ni ¼

XN

j¼1;jai

X
m¼f ;l;s

o
L

SiZijlm eih il � SjZjiml ej

� �
m

� �n o" #
i ¼ 1; . . . ;Nð Þ, (2.38)
Plate 1

Plate i

Plate N

1n

in

nN

m
I1

m
IN

m
Ii

x1

xi

xN

→

→

→

→

→

→

Fig. 13. General hybrid power flow model of N plates joined at arbitrary angles.

Im,1

In,2

y

n

x

�

→

Fig. 12. Power flow model of two plates at arbitrary angle.
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and

�
c2gis

Zio
r eih is �~ni ¼

XN

j¼1;jai

X
m¼f ;l;s

o
L

SiZijlm eih is � SjZjims ej

� �
m

� �n o" #
i ¼ 1; . . . ;Nð Þ, (2.39)

where � c2gim

.
Zio

� �
r eih im �~ni is net m-type power in plate i, eih im is m-type energy density of plate i, Zijmn is

coupling loss factor form m-type waves in plate i to n-type waves in plate j, and ~ni is the normal vector of line
junction in plate i.

In the classical power flow analysis, the boundary condition using diffuse power transmission and reflection
coefficients, and intensity values in the joint of the model shown in Fig. 12 can be expressed as

q1x

� ��
f
¼ g11ff

� �
q1x

� �þ
f
þ g11lf

� �
q1x

� �þ
l
þ g11sf

� �
q1x

� �þ
s
þ t21ff

� �
q2x

� ��
f
þ t21lf

� �
q2x

� ��
l
þ t21sf

� �
q2x

� ��
s
,

q1x

� ��
l
¼ g11fl

� �
q1x

� �þ
f
þ g11ll

� �
q1x

� �þ
l
þ g11sl

� �
q1x

� �þ
s
þ t21fl

� �
q2x

� ��
f
þ t21llh i q2x

� ��
l
þ t21slh i q2x

� ��
s
,

q1x

� ��
s
¼ g11fs

� �
q1x

� �þ
f
þ g11ls

� �
q1x

� �þ
l
þ g11ss

� �
q1x

� �þ
s
þ t21fs

� �
q2x

� ��
f
þ t21lsh i q2x

� ��
l
þ t21ssh i q2x

� ��
s
,

q2x

� �þ
f
¼ t12ff

� �
q1x

� �þ
f
þ t12lf

� �
q1x

� �þ
l
þ t12sf

� �
q1x

� �þ
s
þ g22ff

� �
q2x

� ��
f
þ g22lf

� �
q2x

� ��
l
þ g22sf

� �
q2x

� ��
s
,

q2x

� �þ
l
¼ t12fl

� �
q1x

� �þ
f
þ t12llh i q1x

� �þ
l
þ t12slh i q1x

� �þ
s
þ g22fl

� �
q2x

� ��
f
þ g22ll

� �
q2x

� ��
l
þ g22sl

� �
q2x

� ��
s
,

and

q2x

� �þ
s
¼ t12fs

� �
q1x

� �þ
f
þ t12lsh i q1x

� �þ
l
þ t12ssh i q1x

� �þ
s
þ g22fs

� �
q2x

� ��
f
þ g22ls

� �
q2x

� ��
l
þ g22ss

� �
q2x

� ��
s
.ð2:40a2fÞ

2.2.1. Numerical examples

Numerical applications of hybrid power flow analysis for 2-D case are performed for three finite rectangular
isotropic plates coupled at arbitrary angles and excited by a transverse harmonic point force, as shown in
Fig. 14. The dimensions and thickness of the coupled plate structure shown in Fig. 14 are Lx1 ¼ Lx2 ¼ Lx3 ¼

Ly ¼ 2m and h ¼ 1mm, respectively, and the material properties of the coupled plate structure are assumed to
be the same as those of aluminum (E ¼ 7:1� 1010 Pa; r ¼ 2700 kg=m3). The transverse force is located at
x0 ¼ Lx1=2 and y0 ¼ Ly=2 in plate 1 and its amplitude is F ¼ 10N. The angles, y1 and y2 between two plates
are 451 and �451, respectively. The detailed procedure of numerical analysis for 2-D case is discussed in
Appendix A.2.

When the excitation frequency is f ¼ 5 kHz and structural damping values of all plates are assumed to
be Z ¼ 0.01, hybrid power flow solutions can be obtained using the hybrid boundary condition of
Eqs. (2.31)–(2.36) in all line junctions, as shown in Fig. 15. Though the coupling loss factor of SEA is used in
1xL
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Fig. 14. Three finite plates jointed at arbitrary angles.
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Fig. 15. Energy density and intensity distributions of hybrid power flow solution when f ¼ 5 kHz and Z ¼ 0.1. (a) Flexural energy density;

(b) flexural intensity; (c) longitudinal energy density; (d) longitudinal intensity; (e) shear energy density; (f) shear intensity.
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Fig. 16. The comparison of energy density using classical and hybrid boundary conditions in y ¼ Ly/2 when f ¼ 5 kHz and Z ¼ 0.1

(<f ¼ 2:0017; <l ¼ 0:1636; <s ¼ 0:2826): (a) flexural energy density; (b) longitudinal energy density; (c) shear energy density.
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the boundary condition, the spatial variations of energy density and intensity are expressed well. Figs. 16 and
17 show the comparison of power flow solutions obtained using classical and hybrid boundary conditions
when Z ¼ 0.01 and Z ¼ 0.0001, respectively. In Fig. 16, because the reverberance factors of all wave-fields in
each subsystem are not small (<f ¼ 2:0017, <l ¼ 0:1636, <s ¼ 0:2826) due to high frequency and damping
value, the difference between classical and hybrid power flow solutions is somewhat wide but is not more than
3 dB. However, because the reverberance factors of all wave-fields in each subsystem are very small
(<f ¼ 0:02, <l ¼ 0:0016, <s ¼ 0:0028), hybrid power flow solution nearly agree with classical one in Fig. 17.
Therefore, the hybrid boundary condition for power flow analysis is equivalent to the classical one in case of
small reverberance factor. To definitely confirm these results, Figs. 18 and 19 show the effect of reverberance
factors of wave-fields in each plate subsystem in the hybrid power flow solution. In Figs. 18 and 19, the hybrid
power flow solution is compared with the classical power flow solution using each boundary condition at all
joints. The results in these figures are the relative differences ( E3;classic � E3;hybrid

�� ��
 E3;classic

�� ��� �
) of space-

averaged flexural (out-of-plane) and in-plane energy densities of plate 3, respectively, using classical
and hybrid boundary conditions for various reverberance factors. Like the 1-D case, as the reverberance
factors of each wave-field in plate subsystems become small, energy density levels obtained by two methods
become equal.
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Fig. 17. The comparison of energy density using classical and hybrid boundary conditions in y ¼ Ly/2 when f ¼ 5 kHz and Z ¼ 0.0001

(<f ¼ 0:02; <l ¼ 0:0016; <s ¼ 0:0028): (a) flexural energy density; (b) longitudinal energy density; (c) shear energy density.

Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 299 (2007) 484–503500
3. Conclusions

In this paper, the hybrid power flow analysis using SEA concepts was developed to effectively predict the
vibrational and acoustic responses of low-damping structures and acoustic cavities in the medium-to-high
frequency ranges. To develop the general hybrid method which uses the coupling relationship of SEA in power
flow analysis, the hybrid boundary conditions including all kinds of wave-fields in one- and 2-D cases were
derived, and numerical analyses for the validation of these boundary conditions were performed.
Consequently, as the reverberance factor of the subsystem becomes small, the hybrid and classical power
flow solutions become equal. Therefore, the developed hybrid power flow method can be a useful tool for the
prediction of vibrational and acoustic responses, especially when it uses experimental coupling data for a low-
damping system, if the hybrid boundary condition for 3-D case is derived and the hybrid PFFEM is developed
to extend the application area of hybrid PFA to built-up structures, which are described in the other
companion paper.
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Fig. 18. Relative difference Ep � Eh

�� ��
 Ep

�� ��� �
of space-averaged flexural energy densities by two methods in plate 3 as the reverberance

factor variations of plates 1 and 3. ——, <f 1 ¼ 0:0028; , <f 1 ¼ 0:0283; , <f 1 ¼ 0:2831; , <f 1 ¼ 2:8308; ,

<f 1 ¼ 28:3079.

Fig. 19. Relative difference ( Ep � Eh

�� ��= Ep

�� ��) of space-averaged in-plane energy densities by two methods in plate 3 as the reverberance

factor variation of plates 1 and 3. ——, <l1 ¼ 0:0002; , <l1 ¼ 0:0023; , <l1 ¼ 0:0231; , <l1 ¼ 0:2313; ,

<l1 ¼ 2:3133.
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Appendix A

A.1. Numerical analysis of 1-D case

The equation and exact solution of flexural motion in beam i using Eq. (2.1) can be represented as,
respectively,

Ec;iI i

q4wi

qx4
i

þ riSi

q2wi

qt2
¼ Fd xi � x0ð Þ ejot, (A.1)

and

wi xi; tð Þ ¼ Aie
�jkfixi þ Bejkfixi þ Ce�kfixi þDekfixi

� �
ejot ði ¼ 1; 2; 3; 4Þ, (A.2)

where wi is the transverse displacement of beam i and kfi ¼ o2riSi



Ec;iI i

� �1=4
is the flexural wavenumber of

beam i. The equation and exact solution of longitudinal motion in beam i can be expressed as, respectively,

Ec;iSi

q2ui

qx2
i

� riSi

q2ui

qt2
¼ �F id xi � x0ð Þ ejot, (A.3)

and

ui xi; tð Þ ¼ Mi e
�jklixi þNi e

jklixi
� �

ejot ði ¼ 1; 2; 3Þ, (A.4)

where ui is the longitudinal displacement of beam i and kli ¼ o ri=Ec;i

� �1=2
is the longitudinal wavenumber of

beam i. Because there are a total of 22 unknowns, the boundary conditions of the same number must be
enforced.

The energy governing equations and power flow solutions for the m-type wave in beam p using Eqs. (2.10),
(2.12) and (2.13) can be represented as, respectively,

�
c2g;mp

Zmpo
d2 eh imp

dx2
þ Zmpo eh imp ¼ Pin;mp, (A.5)

and

eh imp ¼ Pmp e
�jmpxp þQmp e

jmpxp , (A.6)

where eh imp, cg,mp and Zmp are the energy density, group velocity, and structural damping loss factor of m-type
in beam p, respectively, and jmp ¼ Zmpo=cmp. In case of power flow solution, a total of 16 unknowns exist.

A.2. Numerical analysis of 2-D case

The energy governing equations for each wave in a thin plate given using Eq. (2.26) can be expressed as [8]

�
c2g;mj

Zmjo
d2

dx2
j

þ
d2

dy2
j

 !
eh imj þ Zmjo eh imj ¼ Pin;mj ; ðj ¼ 1; 2; 3; 4 and m ¼ f ; l; sÞ, (A.7)

where eh imj, cg,mj and Zmj are the energy density, group velocity and structural damping loss factor of m-type in
plate j, respectively. If the all y-directional boundary is simply supported like the model shown in Fig. 14, the
analytic solution of Eq. (A.7) can be obtained as a single series solution,

eh imj xj ; y
� �

¼
X1
n¼0

Emj;n cos kny ¼
X1
n¼0

Aþmj;n e
�lmj;nxj þ A�mj;n e

lmj;nxj

� �
cos kny, (A.8)
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where Emj,n is the nth component of the series solution, Eq. (A.8), kn ¼ np



Ly and lmj;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n þ ðZmjo=cg;mjÞ
2

q
.

The intensity of the m-type wave component in plate j can be obtained by the energy transfer relation,
Eq. (2.27):

qx

� �
mj

xj ; y
� �

¼
X1
n¼0

Qxmj;n cos kny ¼
X1
n¼0

c2g;mj

Zmjo
lmj;n

 !
Aþmj;n e

�lmj;nxj � A�mj;n e
lmj;nxj

� �
cos kny

( )
, (A.9)

and

qy

D E
mj

xj ; y
� �

¼
X1
n¼0

Qymj;n sin kny ¼
X1
n¼0

c2g;mj

Zmjo
kn

 !
Aþmj;n e

�lmj;nxj þ A�mj;n e
lmj;nxj

� �
sin kny

( )
, (A.10)

where qx

� �
mj

and qy

D E
mj

are the x- and y-components of intensity q
� �

mj
.

In addition, the point input power can be approximated as

Pmd x� x0ð Þd y� y0

� �
¼
X1
n¼0

Pm;nðxÞ cos kny, (A.11)

where Pm is the input power of the m-type component. Here, Pm,n, the nth component of Pm can be
expressed as

Pm;n ¼

Pm

Ly

d x� x0ð Þ ðn ¼ 0Þ;

2Pm

Ly

cos kny0d x� x0ð Þ ðna0Þ:

8>>><
>>>:

(A.12)

The six unknowns in each plate’s domain exist, and a total of 24 boundary conditions must be enforced. The
power of each wave component is zero in the simply supported boundary and the continuity of energy density
and power of each wave component in loading point must be enforced. In the line junction of a coupled plate,
Eq. (2.40) is applied in classical power flow solutions, and Eqs. (2.37)–(2.39) are applied in hybrid power flow
solutions.
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